Verification of Existing Building Commissioning Project Savings

Presentation to the California Commissioning Collaborative

June 9, 2011
Project Team

• Content
 – David Jump, QuEST
 – Lia Webster, Mark Effinger, PECI
 – Greg Risko, AEC

• Production
 – Karla Hendrickson, PECI
Agenda

• Project Summary
 – Recent Developments
• Feedback on Outreach Plans
Verification of Savings Project

• Develop additional VoS guidelines for existing building commissioning projects

• Pilot demonstrations and case studies

• Refine existing Option B/C guideline

• Develop criteria and guidance on selecting appropriate methods

• Conduct outreach
2008 CCC VoS Guideline

• Based on interval data method:
 – Hourly or daily regressions
 – Applied to whole building or subsystems
 – IPMVP adherence if strictly applied
 • Option B (retrofit isolation)
 • Option C (whole building)

• Downside:
 – Cannot verify individual ECMs, when many ECMs within system or building, only total savings within
Current VoS Project

• Additional methods developed:
 – Engineering calculations & field verification
 – Equipment or system energy measurement
 – Energy models using interval data
 – Calibrated simulation
Method 1

• Engineering Calculations & Field Verification
 – Verifies individual ECM savings
 – Applies to equipment or systems
 – Mirrors industry practice
 – Recommends best practices
 – Describes use of post-installation operational verification in “truing up” savings estimates
 – Not IPMVP adherent
Method 2

• Equipment or System Energy Measurement
 – Verifies individual ECM savings
 – Applies to equipment or systems
 – Methodology framework based on
 • Baseline load and schedule characteristics
 – constant or variable
 • Impact of ECM
 • Post-install load and schedule characteristics
 – IPMVP adherent
Method 3

- Energy Models using Interval data
 - Verifies system or whole building total savings
 - Regression-based methodology
 - ASHRAE RP1050 change-point models
 - Hourly or daily time intervals
 - Improved based on feedback from pilots, previous guideline comments
 - IPMVP adherent
Method 4

• Calibrated Simulation
 – Whole building or systems, depending on software
 – Can identify individual ECM savings
 – Useful when simulation used for ex-ante savings
 – Can be most difficult and expensive method
 – IPMVP adherent
Essential Components of M&V

Operational Verification

- **Least Rigorous**
 - One-time visual inspection & review of contractor invoices

- **Most Rigorous**
 - Functional testing of system operations, monitoring and analysis of operational parameters under all expected conditions
 - One time collection and analysis of short term trends of key operational parameters
 - Spot measurements of key operational parameters

Savings Verification

- **Least Rigorous**
 - A “sanity check” on the percentage of savings from annual usage totals

- **Most Rigorous**
 - Savings determined from baseline or post-installation model development and projection to the same set of conditions (IPMVP)
 - Peer review of savings calculations and use of collected post-installation data to correct them
 - Comparison of results from an alternate savings calculation
Integrating Savings Verification in EBCx

• EBCx Project Phases
 – Planning
 – Investigation (ex-ante savings estimates)
 – Implementation
 – Hand-off
 – Ongoing Commissioning

• Operational Verification is already a part of EBCx
 – in Hand-Off Phase
Integrating Savings Verification into EBCx

• Each method describes what activities are required in different phases of an EBCx project

• EBCx is a quality assurance process
 – Savings Verification is one more attribute
Pilot Project Summary

• Understand how Interval Data Method can be used in EBCx industry
 – Advantages/Disadvantages

• Engage two EBCx providers to:
 – Implement method on an existing project
 – Obtain feedback to improve Guideline
 – Understand technical issues involved

• Develop Case Studies
 – demonstrate use & results
 – highlight key issues
Method Selection Criteria & Guidance

• Methods vary:
 – Meet different verification goals
 • ECM vs. whole building savings
 • Yield savings uncertainty estimates
 • Check savings persistence
 – Require different resources and impose constraints
 • Have different data and analysis requirements
 • Shorter or longer monitoring requirements
 • Tool availability
 • Expertise
Summary

• Guideline in “book” format with chapters:
 1. Introduction
 2. Integrating Savings Verification into EBCx projects
 3. Method Selection
 4. Method 1: Engineering Calculations with Field Verification
 5. Method 2: Equipment or System Energy Measurements
 7. Method 4: Calibrated Simulation
 8. Appendices

• Near-final drafts of chapters & appendix to Technical Editor
Connections to external research/activities

• Other CCC/CEC projects:
 – EBCx Tools Development
 – EBCx Persistence Improvement

• Other Tools
 – ECAM and Universal Translator for data preparation
 – Private sector tools (QuEMS, Energy Explorer, etc.)
 – LBNL/CEC UT-M&V Tool Module (future)

• Program evaluation requirements/directives from CPUC
 – IPMVP methods

• ASHRAE Research Project 1404
 – Minimum data requirements for energy models
Outreach Goals

• EE-EBCx programs reference guideline
 – For a specific method
 – For any method
 – Add savings verification as a process requirement
• EBCx providers apply methods in projects
• Improve industry understanding of M&V
 – Appropriate data
 – Baseline requirements
 – Methods and algorithms
• EE and Cx industry endorse guideline
Outreach Plan

• Overall Goal
 – Owners & Program Managers have high confidence in EBCx savings & lifetimes
 – Raise realization rates for EBCx programs
 • Programs and evaluators work from same verification standards
Outreach Activities - High Priority

• Post guideline & case studies on CCC website
 – Track downloads

• Conduct utility program-focused workshops
 – ½ to 1 day for program managers
 – Northern CA (SMUD, PG&E)
 – Southern CA (SCE, SoCalGas, SDG&E, LADWP)
 – High-level discussion, not rigorously technical
 – What is needed for program endorsement?
 – What follow-up?
Outreach Activities – High Priority

• Training for service providers
 – Series of web-based meetings
 – On integrating M&V in EBCx & selecting a method
 – On the methods (1 or many webinars)

• Other ideas?
Outreach Activities – Next Priorities

• Present guide to industry groups
 – Obtain endorsement and promotion
 – Efficiency Valuation Organization (IPMVP)
 • NR Canada has agreement for EVO to review & endorse if OK
 – ASHRAE
 – Others?

• Conference presentations
 – e.g. ASHRAE, NCBC, AEE EMC, etc.
Questions? Comments?

Thank you for your participation!